Facial Nonrepetitive Vertex Coloring of Plane Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Strong parity vertex coloring of plane graphs

Czap and Jendrol’ introduced the notions of strong parity vertex coloring and the corresponding strong parity chromatic number χs. They conjectured that there is a constant bound K on χs for the class of 2-connected plane graphs. We prove that the conjecture is true with K = 97, even with an added restriction to proper colorings. Next, we provide simple examples showing that the sharp bound is ...

متن کامل

Nonrepetitive vertex colorings of graphs

We prove new upper bounds on the Thue chromatic number of an arbitrary graph and on the facial Thue chromatic number of a plane graph in terms of its maximum degree. © 2011 Elsevier B.V. All rights reserved.

متن کامل

Facial non-repetitive edge-coloring of plane graphs

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a repetition. A sequence S is called non-repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are coloured. A trail is called non-repetitive if the sequence of colours of its edges is non-repetitive. If G is a plane graph, a facial non-repetitive edge-colo...

متن کامل

The complexity of nonrepetitive edge coloring of graphs

A squarefree word is a sequence w of symbols such that there are no strings x, y, and z for which w = xyyz. A nonrepetitive coloring of a graph is an edge coloring in which the sequence of colors along any open path is squarefree. We show that determining whether a graph G has a nonrepetitive k-coloring is Σ p 2 -complete. When we restrict to paths of lengths at most n, the problem becomes NP-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2012

ISSN: 0364-9024

DOI: 10.1002/jgt.21695